Convergence of local variational spline interpolation
نویسندگان
چکیده
In this paper we first revisit a classical problem of computing variational splines. We propose to compute local variational splines in the sense that they are interpolatory splines which minimize the energy norm over a subinterval. We shall show that the error between local and global variational spline interpolants decays exponentially over a fixed subinterval as the support of the local variational spline increases. By piecing together these locally defined splines, one can obtain a very good C0 approximation of the global variational spline. Finally we generalize this idea to approximate global tensor product B-spline interpolatory surfaces. © 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Convergence of Integro Quartic and Sextic B-Spline interpolation
In this paper, quadratic and sextic B-splines are used to construct an approximating function based on the integral values instead of the function values at the knots. This process due to the type of used B-splines (fourth order or sixth order), called integro quadratic or sextic spline interpolation. After introducing the integro quartic and sextic B-spline interpolation, their convergence is ...
متن کاملOn the Approximation Order and Numerical Stability of Local Lagrange Interpolation by Polyharmonic Splines
This paper proves convergence rates for local scattered data interpolation by polyharmonic splines. To this end, it is shown that the Lagrange basis functions of polyharmonic spline interpolation are invariant under uniform scalings. Consequences of this important result for the numerical stability of the local interpolation scheme are discussed. A stable algorithm for the evaluation of polyhar...
متن کاملA Newton Method for Shape-Preserving Spline Interpolation
Abstract. In 1986, Irvine, Marin, and Smith proposed a Newton-type method for shapepreserving interpolation and, based on numerical experience, conjectured its quadratic convergence. In this paper, we prove local quadratic convergence of their method by viewing it as a semismooth Newton method. We also present a modification of the method which has global quadratic convergence. Numerical exampl...
متن کاملAxial buckling analysis of an isotropic cylindrical shell using the meshless local Petrov-Galerkin method
In this paper the meshless local Petrov-Galerkin (MLPG) method is implemented to study the buckling of isotropic cylindrical shells under axial load. Displacement field equations, based on Donnell and first order shear deformation theory, are taken into consideration. The set of governing equations of motion are numerically solved by the MLPG method in which according to a semi-inverse method, ...
متن کاملVariational Interpolation of Subsets
We consider the problem of variational interpolation of subsets of Euclidean spaces by curves such that the L norm of the second derivative is minimized. It is well known that the resulting curves are cubic spline curves. We study geometric boundary conditions arising for various types of subsets such as subspaces, polyhedra, and submanifolds, and we indicate how solutions can be computed in th...
متن کامل